A Toxoplasma Palmitoyl Acyl Transferase and the Palmitoylated Armadillo Repeat Protein TgARO Govern Apical Rhoptry Tethering and Reveal a Critical Role for the Rhoptries in Host Cell Invasion but Not Egress
نویسندگان
چکیده
Apicomplexans are obligate intracellular parasites that actively penetrate their host cells to create an intracellular niche for replication. Commitment to invasion is thought to be mediated by the rhoptries, specialized apical secretory organelles that inject a protein complex into the host cell to form a tight-junction for parasite entry. Little is known about the molecular factors that govern rhoptry biogenesis, their subcellular organization at the apical end of the parasite and subsequent release of this organelle during invasion. We have identified a Toxoplasma palmitoyl acyltransferase, TgDHHC7, which localizes to the rhoptries. Strikingly, conditional knockdown of TgDHHC7 results in dispersed rhoptries that fail to organize at the apical end of the parasite and are instead scattered throughout the cell. While the morphology and content of these rhoptries appears normal, failure to tether at the apex results in a complete block in host cell invasion. In contrast, attachment and egress are unaffected in the knockdown, demonstrating that the rhoptries are not required for these processes. We show that rhoptry targeting of TgDHHC7 requires a short, highly conserved C-terminal region while a large, divergent N-terminal domain is dispensable for both targeting and function. Additionally, a point mutant lacking a key residue predicted to be critical for enzyme activity fails to rescue apical rhoptry tethering, strongly suggesting that tethering of the organelle is dependent upon TgDHHC7 palmitoylation activity. We tie the importance of this activity to the palmitoylated Armadillo Repeats-Only (TgARO) rhoptry protein by showing that conditional knockdown of TgARO recapitulates the dispersed rhoptry phenotype of TgDHHC7 knockdown. The unexpected finding that apicomplexans have exploited protein palmitoylation for apical organelle tethering yields new insight into the biogenesis and function of rhoptries and may provide new avenues for therapeutic intervention against Toxoplasma and related apicomplexan parasites.
منابع مشابه
The Toxoplasma protein ARO mediates the apical positioning of rhoptry organelles, a prerequisite for host cell invasion.
Members of the phylum Apicomplexa actively enter host cells by a process involving the discharge of the apically localized microneme and rhoptry organelles. To unravel the processes involved in rhoptry organelle biogenesis, we focused on the Toxoplasma gondii armadillo repeats only protein (TgARO), a conserved acylated protein homogenously anchored to the rhoptry membrane. Conditional disruptio...
متن کاملGlobal Analysis of Apicomplexan Protein S-Acyl Transferases Reveals an Enzyme Essential for Invasion
The advent of techniques to study palmitoylation on a whole proteome scale has revealed that it is an important reversible modification that plays a role in regulating multiple biological processes. Palmitoylation can control the affinity of a protein for lipid membranes, which allows it to impact protein trafficking, stability, folding, signalling and interactions. The publication of the palmi...
متن کاملEvidence for the Nucleo-Apical Shuttling of a Beta-Catenin Like Plasmodium falciparum Armadillo Repeat Containing Protein.
Eukaryotic Armadillo (ARM) repeat proteins are multifaceted with prominent roles in cell-cell adhesion, cytoskeletal regulation and intracellular signaling among many others. One such ARM repeat containing protein, ARM Repeats Only (ARO), has recently been demonstrated in both Toxoplasma (TgARO) and Plasmodium (PfARO) parasites to be targeted to the rhoptries during the late asexual stages. TgA...
متن کاملA druggable secretory protein maturase of Toxoplasma essential for invasion and egress
Micronemes and rhoptries are specialized secretory organelles that deploy their contents at the apical tip of apicomplexan parasites in a regulated manner. The secretory proteins participate in motility, invasion, and egress and are subjected to proteolytic maturation prior to organellar storage and discharge. Here we establish that Toxoplasma gondii aspartyl protease 3 (ASP3) resides in the en...
متن کاملDissection of minimal sequence requirements for rhoptry membrane targeting in the malaria parasite.
Rhoptries are specialized secretory organelles characteristic of single cell organisms belonging to the clade Apicomplexa. These organelles play a key role in the invasion process of host cells by accumulating and subsequently secreting an unknown number of proteins mediating host cell entry. Despite their essential role, little is known about their biogenesis, components and targeting determin...
متن کامل